8 resultados para gene-gene interaction

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Recent transcription profiling studies have revealed an unexpectedly large proportion of antisense transcripts in eukaryotic genomes. These antisense genes seem to regulate gene expression by interacting with sense genes. Previous studies have focused on the non-coding antisense genes, but the possible regulatory role of the antisense protein is poorly understood. In this study, we found that a protein encoded by the antisense gene ADF1 acts as a transcription suppressor, regulating the expression of sense gene MDF1 in Saccharomyces cerevisiae. Based on the evolutionary, genetic, cytological and biochemical evidence, we show that the protein-coding sense gene MDF1 most likely originated de novo from a previously non-coding sequence and can significantly suppress the mating efficiency of baker's yeast in rich medium by binding MAT alpha 2 and thus promote vegetative growth. These results shed new light on several important issues, including a new sense-antisense interaction mechanism, the de novo origination of a functional gene, and the regulation of yeast mating pathway.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In Synechocystis sp. PCC 6803, gene sll1384 encodes a protein with a DnaJ domain at its N-terminal portion and a TPR domain at the C-terminal portion. An sll1384 mutant shows no difference from the wild type in adaptation to different temperatures, but almost completely loses its capability of phototactic movement. After complementation with sll1384, the mutant regains the phototaxis. As shown with electron microscopy, on the cell surface, mutant cells have pili that appear to be the same as that of the wild type. Also, the transformation efficiency remains unchanged in the mutant. It is postulated that Sll1384 regulates phototaxis of Synechocystis through protein-protein interaction. It is the first DnaJ-like protein gene identified in a cyanobacterium for a role in phototaxis.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

m Background: Cross-species nuclear transfer has been shown to be a potent approach to retain the genetic viability of a certain species near extinction. However, most embryos produced by cross-species nuclear transfer were compromised because that they were unable to develop to later stages. Gene expression analysis of cross-species cloned embryos will yield new insights into the regulatory mechanisms involved in cross-species nuclear transfer and embryonic development. Results: A novel gene, K31, was identified as an up-regulated gene in fish cross-subfamily cloned embryos using SSH approach and RACE method. K31 complete cDNA sequence is 1106 base pairs (bp) in length, with a 342 bp open reading frame (ORF) encoding a putative protein of 113 amino acids (aa). Comparative analysis revealed no homologous known gene in zebrafish and other species database. K31 protein contains a putative transmembrane helix and five putative phosphorylation sites but without a signal peptide. Expression pattern analysis by real time RT-PCR and whole-mount in situ hybridization (WISH) shows that it has the characteristics of constitutively expressed gene. Sub-cellular localization assay shows that K31 protein can not penetrate the nuclei. Interestingly, over-expression of K31 gene can cause lethality in the epithelioma papulosum cyprinid (EPC) cells in cell culture, which gave hint to the inefficient reprogramming events occurred in cloned embryos. Conclusion: Taken together, our findings indicated that K31 gene is a novel gene differentially expressed in fish cross-subfamily cloned embryos and over-expression of K31 gene can cause lethality of cultured fish cells. To our knowledge, this is the first report on the determination of novel genes involved in nucleo-cytoplasmic interaction of fish cross-subfamily cloned embryos.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A major problem in gene therapy is the determination of the rates at which gene transfer has occurred. Our work has focused on applications of the Sleeping Beauty (SB) transposon system as a non-viral vector for gene therapy. Excision of a transposon from a donor molecule and its integration into a cellular chromosome are catalyzed by SB transposase. In this study, we used a plasmid-based excision assay to study the excision step of transposition. We used the excision assay to evaluate the importance of various sequences that border the sites of excision inside and outside the transposon in order to determine the most active sequences for transposition from a donor plasmid. These findings together with our previous results in transposase binding to the terminal repeats suggest that the sequences in the transposon-junction of SB are involved in steps subsequent to DNA binding but before excision, and that they may have a role in transposase-transposon interaction. We found that SB transposons leave characteristically different footprints at excision sites in different cell types, suggesting that alternative repair machineries operate in concert with transposition. Most importantly, we found that the rates of excision correlate with the rates of transposition. We used this finding to assess transposition in livers of mice that were injected with the SB transposon and transposase. The excision assay appears to be a relatively quick and easy method to optimize protocols for delivery of genes in SB transposons to mammalian chromosomes in living animals. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Edwardsiella tarda is a pathogen with a broad host range that includes human and animals. The E. tarda hemolysin (Eth) system, which comprises EthA and EthB, is a noted virulence element that is widely distributed in pathogenic isolates of E. tarda. Previous study has shown that the expression of ethB is regulated by iron, which suggests the possibility that the ferric uptake regulator (Fur) is involved in the regulation of ethB. The work presented in this report supports the previous findings and demonstrates that ethB expression was decreased under conditions when the E. tarda Fur (Fur(Et)) was overproduced, and enhanced when Fur(Et) was inactivated. We also identified a second ethB regulator, EthR, which is a transcription regulator of the GntR family. EthR represses ethB expression by direct interaction with the ethB promoter region. In addition to ethB, EthR also modulates, but positively, luxS expression and AI-2 production by binding to the luxS promoter region. The expression of ethR itself is subject to negative autoregulation; interference with this regulation by overexpressing ethR during the process of infection caused (i) drastic changes in ethB and luxS expressions, (ii) vitiation in the tissue dissemination and survival ability of the bacterium, and (iii) significant attenuation of the overall bacterial virulence. These results not only provide new insights into the regulation mechanisms of the Eth hemolysin and LuxS/AI-2 quorum sensing systems but also highlight the importance of these systems in bacterial virulence.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Lipopolysaccharide and beta-1,3-glucan-binding protein (LGBP) play a crucial role in the innate immune response of invertebrates as a pattern recognition protein (PRP). The scallop LGBP gene was obtained from Chlamys farreri challenged by Vibrio anguillarum by randomly sequencing cDNA clones from a whole body cDNA library, and by fully sequencing a clone with homology to known LGBP genes. The scallop LGBP consisted of 1876 nucleotides with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, encoding a polypeptide of 440 amino acids with the estimated molecular mass of 47.16 kDa and a predicted isoelectric point of 5.095. The deduced amino acid sequence showed a high similarity to that of invertebrate recognition proteins from blue shrimp, black tiger shrimp, mosquito, freshwater crayfish, earthworms, and sea urchins, with conserved features including a potential polysaccharide-binding motif, a glucanase motif, and N-glycosylation sites. The temporal expression of LGBP genes in healthy and V. anguillarum-challenged C farreri scallop, measured by real-time semiquantitative reverse transcription polymerase chain reaction (PCR), showed that expression was up-regulated initially, followed by recovery as the stimulation cleared. Results indicated that scallop LGBP was a constitutive and inducible acute-phase protein that could play a critical role in scallop-pathogen interaction. (C) 2004 Elsevier B.V. All rights reserved.